NOISE EFFECTS ON
WAVE-GENERATED TRANSPORT
INDUCED BY IDEAL WAVES

JUAN M. RESTREPO AND GARY K. LEAF

ABSTRACT. We consider the transport velocity in boundary layer
flows driven by either noisy monochromatic progressive or standing
waves. The central issue addressed here is whether such flows are
capable of sustaining a transport velocity when noise is present
in the wave field and, if so, in what ways the noise affects the
transport velocity, the mean wall shear stress, and the total mass
flux.

Specifically, we address the effect of noise due to unresolved
processes. Our study is motivated by the fact that in the natural
setting it is the norm rather than the exception that noise is present
in the wave field. We find that when noise is added to standing
waves, the transport in the boundary layer leads to a nonzero mass
flux. On the other hand, noise due to progressive waves reduces
the mass flux. Further, we find that the drift velocity will have
two components: a deterministic one and a diffusive one.

1. INTRODUCTION

The theoretical framework of wave-generated motion in the context
of water, acoustic, and plasma waves rests on the fact that under cer-
tain conditions of motion the Lagrangian particle paths do not describe
closed orbits and thus, over time, the particles that make up the fluid
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itself will drift. Perhaps the earliest theoretical studies of this phenom-
enon are those of Stokes [1] and Lord Rayleigh [2], thus making this
a research topic that is nearly 150 years old. In the 1950s Longuet-
Higgins [3] derived an asymptotic expression for the mean Lagrangian
velocity in an oscillating laminar boundary layer. He also demonstrated
that boundary layers, however thin, have a dramatic effect on the en-
suing drift generated by waves. Further, he suggested that this type
of wave-generated motion could be important in the transport of sed-
iment and, by extension, in the transport of pollutants and nutrients.
Johns [4] and Longuet-Higgins [5] showed that the situation is not qual-
itatively dissimilar in the case of a mixing-length-type boundary layer
(for a review see [6], [7] and references contained therein). Streaming
due to the oscillation of immersed objects in a fluid or the oscillation
of bounding surfaces is also well documented and of considerable in-
terest in the engineering community; it is now a classic topic in fluid
mechanics monographs and textbooks (see [8]).

On the theoretical side, a geometrical interpretation of the relation
between the averages in the Lagrangian and the Fulerian frames led
Andrews and Mclntyre to formulate a generalized Lagrangian mean
theory of wave-generated transport [9], [10], a theory in which certain
geometrical properties of the flow are preserved, such as Kelvin’s cir-
culation.

Progressive waves induce a steady transport velocity in a uniform
channel (see [6]). On the other hand, a standing wave field has the
potential of producing a steady spatial structure in a tracer field oc-
cupying a boundary layer. This fact is exploited in models [11], [12]
for the formation and evolution of large-scale sandbar structures (see
[13] and [14] for reviews). Wave-generated transport has been shown
to modify the dynamics of interacting flows. A consequence of momen-
tum and continuity conservation is that short waves are dynamically
modified by the mass and momentum fluxes due to finite amplitude
long waves [15], [16]. The interaction of currents with the streaming
induced by a wave field has been shown to generate circulation cells,
which have a striking resemblance to Langmuir cells in the ocean and
the atmosphere [17], [18], and has been shown to modify the Ekman
boundary layer in rotating flows [19]. It has also been suggested as
an important transport mechanism in oceanic flows relevant to climate
dynamics [20] and in the shallow reaches of the continental shelf where
waves and currents interact in a significant way [21].

In this study we consider the effect of idealized noise on the transport
generated by monochromatic progressive or standing waves. Noise in
this study is understood to represent underresolved processes in the
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external forcing. When a flow is forced by standing waves, we show
that Gaussian noise, manifesting itself as statistical perturbations of
the phase and amplitude of the waves, generates a nonzero total mass
flux in the boundary layer. We also show that when the forcing is due
to progressive waves, noise significantly diminishes the mass flux.

Elucidating ubiquitous aspects of wave-generated transport, even in
an idealized setting, sheds light on the motion of tracers acted upon
by waves in the physical setting. The particles affected by this trans-
port mechanism may be passive tracers; they may be mechanically
interacting particles such as sand, self-propelled biological organisms,
or pollutants that interact mechanically and chemically. Often, these
particles, in turn, affect the flow in the boundary layer, such as is the
case in a loose sedimentary bed. Our study does not focus on the
dynamics of these particle systems, although we make use of passive
tracers to investigate the transport velocity itself.

We use a Prandtl model to approximate the flow in the boundary
layer in the neighborhood of an ideally smooth bounding wall (see [22]).
As shown in [23], the flow under the action of waves in the boundary
layer in a wave channel with a perfectly smooth bottom is well captured
by the progressive-wave solution of the linear Prandtl boundary layer
equations’

(1) uy = cos(kx — wt) — exp(—LFz) cos(kx — wt + Bz),

where u; denotes the horizontal velocity, k£ is the wavenumber and w
the frequency of the wave, = is the horizontal coordinate and z the
vertical coordinate, ¢ is the time, and 8 = wzh/\ﬂ%/), where v is the
dissipation and zj, is the boundary layer thickness. For the standing
wave case the solution to the linear Prandtl equations is

u; = cos(kz)cos(wt)
(2) — exp(—pz) cos(kz) cos(wt — Bz).

In this study, however, we do not use these expressions in the compu-
tation of the transport. Instead, we use numerical means to obtain the
approximate solution to the nonlinear Prandtl model.

Section 2 focuses on a description of the ideal wave channel and on
details of the Prandtl boundary layer model and its numerical approx-
imation. A description of how the transport velocity relates to the
properties of the flow appears in Section 3. In this section, we also
review some salient aspects of the transport velocity in boundary layer

!These equations are more commonly known as “Stokes’s second problem.” Since
Stokes’s name is invoked in several places and in different contexts, however, we
will call these equations the linear Prandtl equations to avoid possible confusion.
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flows forced by either progressive or standing waves in the absence of
noise. The former produces a steady drift velocity with nonzero mean
and no spatial structure, the latter a steady drift velocity with zero
mean and spatial structure. We think of the progressive wave and the
standing wave cases as being two extremes in the transport they gen-
erate. The simplest external forcing that generates a nonzero mean as
well as spatial structure in the steady drift is a “leaky” standing wave.
In this case the external forcing can be characterized by waves with
an incident and a reflecting component that has a relative amplitude
0 < R < 1. As a function of R the mass transport characteristics of
this flow were explored in detail in [24]. Examination of these three
examples leads to an understanding of how noise affects the transport
when it is present in the external forcing The situation when noise
is present is considered in Section 4. Conclusions relevant to wave-
generated transport derived from this work appear in Section 5.

2. DESCRIPTION OF THE IDEAL WAVE CHANNEL

The horizontal coordinate in the computational domain, or “chan-
nel,” is denoted by x and the vertical coordinate by z. The z = 0
plane coincides with the bottom of the channel, which is assumed to
be ideally smooth and rigid. The channel is taken to be periodic in x
and three wavelengths long.

The relation between the angular frequency w and the wavenumber
k for the waves is assumed to be

w? = gktanh(kh),

where g is the gravity constant and h is the water column depth.

The size of kh is a determining factor in the penetration depth of
these waves; in particular, if kA is small, we expect the penetration
depth of the waves to be significant. This is relevant to mass transport
in the boundary layer because its strength is determined to a large
extent by the amplitude of the forcing immediately outside the layer.
A small kh value implies that the waves are long compared with the
depth of the water column. In the simulations to be discussed presently,
kh =~ 0.2534. The period P of the waves was 8 seconds, producing a
wavenumber 0.2534 m~! corresponding to waves with a wavelength of
approximately A = 24.79 m.

The forcing velocity immediately outside of the boundary layer is
denoted by U(z,t). In the experiments the velocity amplitude was
Un = 0.7456 m/s. The external forcing velocity was either a progres-
sive or a standing wave (denoted PW and SW, respectively), with a



NOISE AND WAVE-GENERATED TRANSPORT 5

EXTERNAL VELOCITY
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FIGURE 1. External forcing velocity U(z,t): (a) pro-
gressive wave case, (b) standing wave case. See text for a
description of the forcing velocity amplitude, wavelength,
and frequency.

~—

phase that may have depended on time. The progressive wave forcing
velocity was

(3) U(z,t) = Uy cos(kx — wt — (1)),

with £ determined by the dispersion relations given above, once w
was chosen in the experiment. The phase noise 7y is a time-dependent
Gaussian noise process with zero mean. The noise source has two
parameters: the noise amplitude, which is related to the variance of
the process, and its frequency, denoted by 1/T,,, where T,, is given in
units of fractions of a period P of the forcing. The noise frequency
determines how often the external forcing is perturbed.
The standing wave forcing was of the form

(4) U(x,t) = Uy, cos(kx) cos(wt — y(t)).

Figure 1 depicts the space-time contours of the forcing velocity.
Shown here is the external velocity during the last four periods of a
numerical experiment. The contours correspond to the absolute value
of the velocity amplitude. Since the forcing is oscillatory, the velocity
will reverse direction during each cycle. For reference, Figure 2 shows
the effect noise has on the PW external forcing. Figure 2a shows the
external forcing when the phase is perturbed randomly at times shorter
than the period of oscillation of the external forcing (7,, = P/20). Fig-
ure 2b shows the external forcing when the perturbations to the phase
are made at times commensurate with the period. In both figures the
noise amplitude is 0.17.
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EXTERNAL VELOCITY

FIGURE 2. External forcing velocity U(z,t) with added
noise, for the progressive wave case: (a) phase noise per-
turbations at times shorter than the period (7,, = P/20),
(b) noise perturbations at times equal or longer than the
period (7,, = P). The parameters are the same as in
Figure 1. Noise amplitude is 0.17.

2.1. Boundary Layer Model and Its Numerical Approxima-
tion. The Prandtl equations are

ou ou ou S?0%u

where the following scaling has been used: z + x/\, z < 2/d, t +
tw, u < u/Up, w < w/Wy,, with Wy, = Up,6/\, U < U/U,,, with
new <« old, new being the dimensionless variables. Here, 6 = /v /w
is the Stokes layer thickness, and v is the dynamic viscosity of water.

The dimensionless numbers € = 1/S, where S = w\/U,,, and Re =
wA?/v characterize the flow. These are S ~ 10® and Re ~ 107 in all
the experiments reported in this study.

The flow was made periodic at the far and near ends of the channel.
A no-slip boundary condition was applied at the channel wall, and the
velocity at the edge of the boundary layer matched the external forcing
velocity U(z,t). In the numerical experiments the flow was initialized
by using the analytical solution to the linear Prandtl equations, that is,
the solution to the mass and momentum conservation equations with
all terms proportional to € in (5) set to zero.

A full description of the discretization of the equations appears in
Appendix A. The appendix also details how the results derived by using
the Prandtl model and its numerical approximation compare with those
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obtained by using a numerical solution of the Navier-Stokes equations
under the same physical conditions. Since running averages will play
an important role as a diagnostic tool in what follows, in Appendix B
we provide the particulars of our tests on the accuracy of the algorithm
used. Running averages were computed after discarding the first three
periods of the simulation, thereby removing the effect of the initial state
of the channel flow on the resulting averages. The simulations that
produced the data for the analysis were carried out for a sufficiently
long time to establish an approximation of the asymptotic behavior of
the flow and diagnostic quantities. In each group of simulations the
actual length of the runs is explicitly given; however, figures featuring
the drift or the transport in space and time will show the flow only
during the last four time periods of the experiment. To assay the
characteristics of the transport velocity under different wave forcing
and noise conditions, we also used an algorithm to advect tracers, thus
obtaining approximations of the Lagrangian paths of ideal tracers. The
advection algorithm is described in detail in Appendix C.

3. THE TRANSPORT VELOCITY

We wish to investigate the mean Lagrangian velocity (ur) because
this quantity is related to the transport of tracers in the flow. The
angled brackets denote the mean: for some quantity f(-,t), say, the
mean at time 7 is defined as

to+T
Sey=g [ fe
to
Here, t denotes time, and t; is the time at which the average is initiated.
This definition of the mean applies to both periodic and nonperiodic
quantities and is frequently used to compute a mean of experimental
or field data.

The connection between the mean Lagrangian velocity and the mean
Eulerian velocity may be expressed as (u;) = (ug) + @, with (ug)
representing the averaged Eulerian velocity. We will refer to (ug) as
the drift velocity. In this study, prominence is given to the drift velocity
because it is a robust measurable diagnostic quantity for the mass
flux. The drift velocity is also important because it is related to the
average shear stress, which in turn is related to such factors as the
characterization of forces required to dislodge and/or initiate particle
tracer motion in a flow. Since the average shear stress is

ou
(2o,
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it is approximately equal to the drift velocity, in the neighborhood of
the bottom, times pr/d, where p is the density, v the viscosity, and 0
the layer thickness.

Direct calculation of the mean Lagrangian velocity everywhere in
the boundary layer is impractical, and thus it is difficult to obtain
the transport velocity. Since the calculation of the drift velocity is
straightforward, however, an approximation to the transport velocity
is possible if a good representation of the term 1 is available. In oscil-
latory flows such as those considered here, it is possible to approximate
u by taking a finite number of terms in the series expression as derived
in [3]. For smooth boundary layer flows, the particle orbits do not
close on themselves; and if the distance between the starting and the
ending points over the period is small, an adequate approximation to
U is obtained by retaining a small number of terms in the expansion.
The first term in that expansion is

us = (S - Vuy(-, 1)),

where S = [ "u;(-,#)dt’. Usually ug is called the Stokes drift veloc-
ity (see [7]). Hence, if higher-order terms in the expansion of @ are
sufficiently small, the transport velocity may be well approximated by
(ug) + us. Retaining only one term in the expansion of 1 may be
supported by the following argument. We write u = u; +us +--- and
(W) = ug + (Gy) + - --. The time average of u; is zero, since it is the
solution to the linear Prandtl boundary layer equation. We surmise
that

(i) = </ S(-,t') - Vuy (-, ) dt’ - Vuy (-, 1) + %S(-,t) V2, (-, 1) - S(-,t)>.

An estimate of the size of ug in terms of the magnitude of the velocity
U,., the wavenumber k, and the frequency w of the size of the Stokes
drift isug = O(U2k/w). Similarly, an estimate of (o) is O(U2 (k/w)?).
The ratio of (Qiz) to ug is thus O(U,,k/w), which is small in all cases
considered in this study (approximately 1072).

Since we are studying aspects of the transport in a thin boundary
layer whose aspect ratio is very small when compared with the hori-
zontal spatial scales, we will speak of the horizontal component of the
transport velocity as the transport velocity itself.

Ideal tracers in a flow move away from locations along the channel
that are subject to high transport velocities and tend to concentrate
at locations where the transport velocity amplitude is low, leading to
an uneven distribution of tracers. If the transport velocity is steady,
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however, this distribution will be uniform along the channel. The hor-
izontal direction in which the tracers move is given by the sign of the
horizontal component of the transport itself. A useful qualitative char-
acterization of the flow is afforded by thinking of the transport, at any
time, as composed of a (spatial) mean, or DC, and a fluctuating, or
residual, component.? The spatial mean naturally corresponds to the
lowest component of the space Fourier spectrum and describes the net
transport current. More important, the quantity 1/3), f03’\’(uL) dz,
which is the total mean flux per unit length of fluid in the channel,
is proportional to the DC. The remaining portion of the spectrum
makes up the residual component of the transport velocity. This resid-
ual transport is important because, if it is steady or nearly steady in
time, it implies the existence of spatial structure in the transport and
the potential for a nonuniform mean distribution of tracers under the
action of the flow.

Let us suppose for the moment that the DC' is zero and that steady
running average conditions prevail. Then tracers at locations where
the residual transport is zero do not move. We call these locations
traps. An accumulating trap, or node, is one in which there is a zero
in the residual and, in addition, the transport locally has a negative
slope that persists over time. These traps attract moving particles,
and accumulation ensues at these sites. If the DC component is not
zero, however, the net transport is a result of the DC and the residual
components. In this case, particles accumulate at the traps only if the
tracers have some threshold of motion higher than the mean but lower
than the maximum magnitude of the transport.

3.0.1. Transport Induced by Progressive and Standing Waves. Next we
summarize some qualitative differences between the transport veloc-
ity induced by progressive and standing wave external forcing in the
absence of noise.

Figure 3 shows the space-time plot of the horizontal component of
the transport velocity. Figure 3a corresponds to PW and Figure 3b to
SW forcing, respectively. The velocity was measured roughly a Stokes
layer depth above the wall. The figures depict the contours of the
velocity amplitude, with the dark and light patches corresponding to
low and high velocities, respectively. The amplitude of the velocity
may be inferred from Figure 5. At any particular position along the
channel, the transport (which is defined in terms of a running average)
exhibits oscillatory behavior and a slowly decaying envelope. This is

2We emphasize that the terms DC and residual apply only to spatial consider-
ations, not time dependencies.
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FIGURE 3. Contours of the transport velocity (horizon-
tal component) due to (a) progressive waves (PW), (b)
standing waves (SW). The vertical scale is comparable
to that of Figure 5.
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FIGURE 4. Time history of the drift velocity at some
particular position in the channel for the PW case with
no added noise: (a) detail during the first few periods of
the simulation, (b) full history. See Figure 5 for a vertical
scale for the amplitude of the transport velocity at the
end of the experiment.

illustrated in Figure 4, for the PW case. For these monochromatic,
time-harmonic waves, the mean transport is numerically equal to the
value of the transport itself at times commensurate with the period
of the forcing. Our calculations show that the mean transport agrees
with standard theory (see [25, pp. 353-364] and [6, pp. 420-434]).
That is, for waves progressing from left to right, the mean transport
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for PW forcing is steady in time and uniform in space. Its magnitude
is nonzero and positive. Figures 5a and 5c portray the transport at
the end of the experiment, for the PW forcing case, in the absence
of noise. Figure 5c shows the superposition of the transport velocity
for the last few periods. The spatially fluctuating traces in this figure
depict the transport velocity at times incommensurate with the period.
Traces that are constant across the entire channel correspond to the
mean transport. These latter ones are colinear and depict the mean
transport velocity.

For SW forcing, the transport is steady in time. It is composed
of spatial cells with horizontal dimensions half the wavelength of the
forcing. The spatial mean of the transport for the SW case in the
absence of noise is zero. The SW transport with no noise present is
shown in Figure 3.

With the aid of these figures we can construct a qualitative descrip-
tion of how ideal or passive tracers® would respond to the transport
velocity under PW forcing in the absence of noise. The space and
time symmetries induced by the sinusoidal forcing imply that the mean
transport must be constant. Intuitively, this reflects the fact that as
the wave train progresses down the channel, it imparts the same effect
on the flow everywhere along the channel. If the transport at some
given height above the wall, locally, is found to have a specific value,
symmetry implies that the transport measured anywhere else along the
channel must be the same, provided that the averaging process required
in computing the transport is well defined. Indeed, this fact is reflected
by our computation. The transport is constant and is always positive.
Since the transport is positive, passive tracers would advect in the di-
rection of wave motion, toward the end of the channel. Clearly, the
tracer flux is proportional to the spatially averaged transport, which
in this case is equal to the transport itself, and hence the flux is also
positive and constant. Furthermore, since the mean wall shear stress
is proportional to the drift velocity, the bottom of the tank would ex-
perience, on average, a positive and uniform mean shear stress. These
findings agree with the standard asymptotic theory.

For the SW case, the situation can be summarized as follows. The
spatial mean of the transport is found to be machine zero; therefore, the
mean flux is zero as well. However, the SW flow produces a transport
with steady spatial structure, proportional to sin(2kz). Thus, pas-
sive tracers will move away from locations of high transport and tend
to concentrate at locations where the transport velocity amplitude is

3 As the name implies, ideal tracers trace the Lagrangian path in a flow.
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zero, forming the cells that the asymptotic theory predicts. While the
total flux is zero, for the noiseless SW case, ideal particles with initial
position corresponding to one of the transport cells will stay in that
cell for all time.

When the flow is forced by monochromatic progressive waves, nodes
are not found in the transport, since the residual transport is zero. This
follows from the observation that, for progressive waves in a uniform
channel, the model is translationally invariant. Tracers will move in
the direction of the progressive waves because the DC component is
nonzero and positive. In the SW case, however, nodes do occur because
the DC' component is zero and the residual has time-steady traps with
negative slopes.

4. THE EFFECT OF NOISE IN THE FORCING ON THE TRANSPORT

Noise usually is present both in the laboratory and in the natural
setting. Since wave-generated transport is typically a relatively weak
phenomenon, one expects noise to have a significant effect on it, es-
pecially over the long time frames required for significant transport to
occur. Our investigation focuses on how the transport and, by exten-
sion, the mass flux and the mean shear stress are affected by noise
derived from unresolved physical processes.

In the context of the boundary layer problem it is reasonable to sug-
gest that noise perturbations affect either the phase or the amplitude
of the wave forcing and that the boundary layer itself would respond
according to (5) and (6). At any instant in time, noise perturbations
would induce an uncertainty in the measurements of the actual loca-
tion of maxima and minima in the wave, as well as an uncertainty in
the measurement of the wave amplitude.

Models for the PW and SW forcing that incorporate the above qual-
ities are (3) and (4). ;From these expressions it is clear that a nonzero
v(t) will affect both the phase and the amplitude of the forcing. With
v(t) a Gaussian noise process, with zero mean, the resulting model is
one in which the uncertainty in the phase and the amplitude of the wave
grows proportional to the square-root of time. The adoption of Gauss-
ian statistics is done here in an ad hoc way. However, this assumption
is often invoked (and sometimes abused) in order to characterize the
statistics of a great many oceanic processes.

Intuitively, it seems natural to think that phase noise acts as an
effective decorrelator of running averages, since the noise would act
as some sort of diffusive process. Indeed, our results bear this out.
However, it is difficult to envisage in what way noise actually affects
such aspects of the flow as the transport, the wall shear stress, and the
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mass flux. For example, does the transport slowly decay, completely
disappear, destabilize, or develop a totally different structure?

Two properties characterize the noise fluctuations: the amplitude
and the frequency. These become parameters in our experimental study
on the effect of noise on transport. The amplitude is related to the wave
uncertainty in phase. The frequency is related to how often a noise
perturbation occurs. It affects the coherence of the external forcing
over time; the lower the frequency, the higher the degree of spatial
coherence, but the longer it takes for quantities calculated via running
averages to nominally settle. There is a space-time symmetry, so that
noise perturbations in time, affecting the whole extent of the wave,
correspond to perturbations in space, affecting the wave for a long
period of time. Hence, the effect of the noise over time at a single
place has a corresponding description in terms of the effect of noise
over some span of the channel at some particular instant in time.

In each experiment the code was run for 150 periods. Measurements,
however, were made only in the last 100 periods of the run. We sum-
marize below the outcome of experiments in which the noise amplitude
was varied in a range 0 — 7. Coverage of the noise frequency parameter
range was less complete. We did, however, test noise frequencies that
were both higher and lower than the frequency of external forcing.

For the PW case, noise caused the DC, and thereby the mass flux,
to drop appreciably, compared with the noiseless case. The DC was no
longer steady. The residual was also modified by the presence of noise,
becoming amplified significantly. In fact, ignoring the DC' component,
we note an interesting qualitative change on the drift velocity due to
noise, namely, the appearance of nodes in the residual. These nodes
are not traps for ideal tracers, however, since the residual is everywhere
positive. Hence, although the transport is structured, a nonzero flux
will be present everywhere along the channel. If ideal tracers were
present, they would eventually reach the end of the tank, regardless of
where in the tank they were placed. On the other hand, if the tracers
had some threshold of motion slightly above the DC level, it would
then be possible for tracers to accumulate at the nodes.

The most salient structural changes in the drift due to noise are
evidenced in Figure 5. In Figure 5a contours of the drift velocity, noise
absent, are portrayed in space and time. For comparison, Figure 5b
shows the case when noise is present. To emphasize their symmetry,
we have not shaded the contours; however, it is understood that in 5a
they would be consistent with Figure 3a, and that in Figure 5b the
contours would appear as alternate shaded and unshaded regions. In
fact, from Figure 5b it is seen that when noise is present the residual



14 J. M. RESTREPO AND G. K. LEAF

e
e

(f@
g
)

R

EENNNNG

5
8
o

R

-
<
3

space, wavelengths space, wavelengths

FIGURE 5. Effect of noise on the drift velocity, PW case.
The space-time plot of the drift velocity: (a) no noise, (b)
with noise. The superposition of the drift velocity over
the last 10 periods of the simulation, as a function of
position along the channel: (c) no noise, (d) with noise.
Noise frequency: 1/T, = 20/P; noise amplitude: 0.57.

flow has a nearly steady structure in time. Figures 5c and 5d shows
a superposition of the drift for the last ten periods of the run, as a
function of position. Figure 5d, which corresponds to the case in which
noise is present, clearly shows that the running averages are nonuniform
in space and nearly steady in time. Examination of the residual in
both cases depicted in Figure 5 reveals that the transport in the noisy
case has a significantly lower DC component than does the noiseless
counterpart, and a residual that is not present in the noiseless case.
Thus we find that for the PW case, the presence of noise has two
significant effects on the drift. First, the magnitude of the mean drift
is greatly reduced. Second, the residual flow acquires a nearly steady
spatial structure. These effects are not as sensitive to the amplitude or
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frequency of the noise but, rather, to the existence of a noise pertur-
bation.

For the SW case, noise has a less dramatic but nevertheless signifi-
cant, effect. Whether noise is present or not, the space-time picture of
the transport looks very similar to that of Figure 3. This is certainly
true for small but reasonable amplitudes of the noise. The residual
is affected by the appearance of fluctuations inside the trapping cells.
The cases with noise and with no noise present are depicted in Figures
6a and 6b, respectively. Of note is the absence of the periodic appear-
ance of a reverse flow in each of the cells of the standing wave structure
in the noisy case. This is evidenced by comparing it with the noiseless
case in Figure 6. Examination of the data reveals that in the absence of
noise the DC' is zero and thus the total flux is zero. With noise present,
however, the flux is nonzero and unsteady, sometimes even becoming
negative. Summarizing the findings on the SW experiments, we find
that noise induces a small nonzero total flux.

Next we quantify the dependence of the transport velocity on the
noise amplitude and frequency. Specifically, we calculate the Lagrangian
trajectories (for details, see Appendix C), using both the vertical and
horizontal components of the Eulerian velocity. As Figures 7-10 in-
dicate, the vertical component of the velocity is very small compared
with the horizontal component. Furthermore, by virtue of (6) we can
infer that for the PW case the vertical velocity forms cells of upward
and downward directed motion and that in these cells the vertical ve-
locity must be monotonic. Thus we expect that particles will exhibit
both a transverse and an upward or downward trend in their motion,
when acted upon by the velocity field in the layer.

The result of calculating the Lagrangian trajectories, over nine peri-
ods of forcing, appear in Figure 7. The particles were placed initially at
equally spaced horizontal intervals, roughly one Stokes layer above the
wall. The path traced by a particle in the noiseless PW case appears in
Figure 7a, its noisy counterpart in Figure 7b. The noise amplitude and
frequency were 0.57 and 20/ P, respectively. The dissipation inherent
in the advection scheme is apparent in the figures by a trend in the
orbit to get smaller in radii. This causes the particle to get deflected
slightly in the vertical direction. The effect is fairly small, however,
when compared with the particles’ reaction to the total velocity field.
Overall, the result of these two is slight: note the aspect ratio of the
vertical and horizontal coordinates on the plots.

When the particle paths are sampled at times commensurate with
the period and their tracks connected by lines we obtain Figure 8a,
and Figure 8c, for the noiseless and noisy case, respectively. Figure
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FIGURE 6. SW case. Superposition of the drift veloc-
ities, at many times corresponding to the last periods
of the simulation, as a function of position along the
channel: (a) no noise, (b) with noise. Noise frequency:
1/T,, = 20/ P; noise amplitude: 0.57.

8b and Figure 8d show the starting and final position particle position
along the channel for these two cases. ;From this figure it is clear that
the particles are not traveling as far along the channel in the presence
of noise, and that the horizontal component of the velocity is greatly
affected, thus making the relative effects of the vertical component of
the velocity on the particle motion more prominent.

How this manifests itself in the flux can be assessed by the direct cal-
culation of the flux at some given location in the channel. By counting
particles traveling from left to right across x = 1.2, say, as positive
and those traveling from right to left across z = 1.2\ as negative, we
can arrive at a net flux value. The choice of location was arbitrary in
this calculation. Figures 9a and 9b show the flux of tracers for the PW
noiseless and noisy case, respectively. Clearly, the noise reduces the
net flux significantly.
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FIGURE 7. Lagrangian particle trajectories: (a) no
noise, (b) noise, with frequency 20/P and amplitude
0.5m. PW case.

As we said previously, the most salient effect of noise on the SW case
is the creation of a small net flux. This is borne out in the Lagrangian
trajectories shown in Figures 10a and 10b, which correspond to the
noiseless and noisy case, respectively. As is evident from the noisy
case, tracers leak from cell to cell.

Next we show how the flux is affected by the noise amplitude and
the frequency. The quantitative dependence of the flux on the presence
of noise is examined by the following proxy calculation. We calculate
the statistical mean displacement of a particle over a fixed time. We
then use this data to calculate a transport velocity and thus obtain the
flux.

Ensemble averages of the Lagrangian trajectory are computed. Each
member of the ensemble corresponds to the trajectory of one of thirty-
three different release times, over the period of the forcing wave. Hence,
each particle is released at a different phase value of the wave. Further-
more, for any given Lagrangian path identified by a given initial phase,
we calculate a path under three different noise time series. Among these
three realizations the parameters of noise amplitude and frequency are
the same. When no noise is present, the three trajectories are identical.
With noise, the three trajectories starting with an initial phase have no
commonality in their time series. In fact, removal of the deterministic
component of all the trajectories shows that the ninety-nine Lagrangian
paths are unique realizations that share only statistical properties. As
before, the total time of each run is nine periods, and settings for the
experiments are the same as in Figure 8, save for variations in the noise
frequency and amplitude.
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0151 0151

Ficure 8. Effect of noise on the Lagrangian trajecto-
ries, PW case: (a)-(b) no noise, (¢)—(d) with noise. Tra-
jectories were sampled at times commensurate with the
period. Noise frequency: 20/P; noise amplitude: 0.57.
The initial and final particle positions are shown in (b)
and (d).

The procedure just described yields the ensemble average unsigned
distance, which is defined as |x; — x; - X5 — x;|, where the subscript f
denotes the mean particle position after nine periods and 7 the initial
position. We also report on the displacement, which we define to be
the unsigned distance

pmax 1x(T) — x; - x(T) — x4,

where P is one period. The distance will thus measure the average
distance an ideal tracer in the fluid would move in nine periods, and
the displacement the relative scatter of the position of the tracer over
this time span. Both the distance and the displacement are in units of
fractions of a wavelength.

The results of this experiment are tabulated in Table 1. In the PW
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FiGUuRrE 9. Lagrangian particle fluxes at x = 1.2\, PW
case: (a) no noise, (b) noise. Note the different vertical
scales. Noise frequency: 20/P; amplitude: 0.57. Exper-
imental conditions are the same as in Figure 8.
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FiGurE 10. Particle trajectories sampled at times com-
mensurate with the period, SW case: (a) no noise, (b)
noise. Noise frequency: 20/P; noise amplitude: 0.57.
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TABLE 1. Relative displacement (D) and distance (d) of
ensemble trajectory as a function of the noise amplitude
(N). Noise frequency is 1/20P, total time: 9 periods.

Progressive Wave Standing Wave

N D d N D d

0.0 0.9806 0.9806 0.0 0.0196  0.0000
0.1 0.9242 0.9242 0.1 0.0228  0.0084
0.3 0.6098 0.5817 0.3  0.0717  0.0005
0.5 0.4546  0.4546 0.5 0.5033  0.3230
0.7 0.2989 0.2943 0.7 0.0639  0.0101
0.9 0.2455 0.2440 0.9 0.0164 0.0033

case the table shows that noise reduces the flux by significantly dimin-
ishing, on average, particle advection. A fit of the data shows that the
distance drops nearly linearly with noise amplitude. The drop in the
displacement is strikingly similar to the distance, indicating that the
particle, on average, gets further away the longer the forcing is active,
regardless of the amount of noise, and that on average the maximum
displacement is well captured by the distance itself. In the SW case, the
data indicates that the presence of noise increases the average distance
and displacement of ideal tracers as the noise amplitude increases, pro-
vided that the noise amplitude is small. When the amplitude of the
noise is large, however, the distance and the displacement drop. Since
the noise has zero mean and is Gaussian, the results indicate that for
large noise levels the noise itself largely determines the flux in the SW
case. Moreover, the discrepancy between the displacement and the
distance indicates that, on average, particles do not attain maximum
displacement at the final time. Transport in the large noise amplitude
regime is then diffusion dominated.

The noise frequency dependence of the displacement and the distance
is straightforward, given a fixed noise amplitude. It speaks more about
the measurement process itself than about the physics. Our comments
are limited to the effect of the noise frequency on the outcome, for fre-
quencies significantly higher than the forcing frequency. Our findings
indicate that the transport magnitude and shape are not influenced
greatly by the change in noise frequency, regardless of whether the
forcing is PW or SW. The slow convergence of the running averages,
however, means that as the frequency of the noise decreases, the run-
ning averages of the monitored quantities take longer to converge to
within some small tolerance. When the duration of the experiments
is increased in indirect proportion to the noise frequency, the results
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become statistically similar, particularly in the PW case. Significant
changes occur because of the presence or absence of noise, rather than
the noise frequency value itself.

5. CONCLUSIONS

The transport velocity and the mass flux are associated with the
time-averaged Lagrangian velocity and thus are important in the dy-
namics of tracers in a fluid flow. For waves of finite amplitude, the
transport velocity may be approximated by the superposition of the
mean Eulerian velocity and the Stokes drift. In this study we explored
how the transport velocity in a laminar boundary layer, bounded by
an ideal straight wall, under the action of sinusoidal progressive or
standing waves, is affected by noise. The highly idealized setting of
our experimental configuration enabled us to compare the effect of the
noiseless situation—which is well known—with that of the noisy situ-
ation.

We specifically addressed how noise from underresolved dynamics
affects the transport, the mean shear stress, and the fluxes in a lami-
nar boundary layer. For our numerical simulations we purposely used
measuring techniques that are commonly used in a laboratory or field
setting. The boundary layer asymptotic theory, though of limited va-
lidity, is entirely appropriate for the perfectly smooth channel that we
used in our experiments. Nevertheless, as a further check, we bench-
marked our results qualitatively to a direct numerical simulation of the
Navier Stokes equations in the channel and found very good agreement.
In summary, our results may show (acceptable) quantitative differences
with what we think of a generally agreed-upon model for fluids, and
may show only mild qualitative differences.

The noise perturbation applied in this problem was Gaussian with
zero mean. The noise perturbation produces monotonic slow growth
in the uncertainties in the wave amplitude and phase that accumulate
over time.

We found that noise has a dramatic and somewhat unexpected effect
on the transport velocity in the boundary layer and, by extension, on
the mean wall shear stress and the mass flux. Our general organizing
principle has been to examine how noise affects two naturally occurring
situations: when the forcing external to the layer is a progressive wave
(PW) and when the forcing is a standing wave (SW). The asymptotic
theory for the deterministic problem shows that these two forcing cases
may be viewed as two extremes in the outcome on the transport in the
natural setting. In fact, with these extremes it is easy to envision, at
least qualitatively, how the situation for the leaky wave will play out
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(in this endeavor we are helped by the calculations of the deterministic
case by Carter et al. [24]).

The findings in this study suggest that the transport resulting from
PW and SW external forcing subject to noise due to underresolved
processes may be characterized by two components: a deterministic
one and a diffusive one. Their relative effect on the transport depends
on whether the external flow is PW or SW.

In the PW case, noise in the forcing decreases the mean and the to-
tal mass flux. The spatial mean wall shear and the transport velocity
also decrease. At the same time, there is an enhancement of the spa-
tially nonhomogeneous portion, or residual, of the transport velocity
and thus of the wall shear stress. The mean flux drops almost linearly
with the noise amplitude. Nevertheless, the mean flux is still positive,
and thus ideal tracers present in the flow still will move in the direc-
tion of the waves, but at a reduced rate compared with the noiseless
case. In the event that these tracers have a threshold of motion greater
than the spatial mean of the transport but smaller than the maximum
transport, the tracers may produce a nonuniform spatial distribution
along the channel. With respect to the frequency of perturbations, the
results are more telling about the measurement process itself. For noise
frequencies that are higher than the forcing frequency, the running av-
erages of quantities such as drift velocity and transport tend to require
more time in reaching an adequate level of convergence. The reason is
that these running averages converge at a rate inversely proportional
to time, weighted by the period of the forcing. If the running aver-
ages are taken over commensurably longer time periods, the lower the
noise frequency is made, the closer they reach statistical equivalence,
all other things remaining the same. This assumes, of course, that the
time steps in the numerical calculation are sufficiently small that the
noise signal is adequately resolved.

In the SW case it is found that noise induces a very small mass flux.
This mass flux can be in either direction along the horizontal coordinate
of the channel. Hence, the spatial mean of the transport tends to
increase slightly at the expense of the residual. Overall, however, the
SW case shows that the structure and the magnitude of the transport
changes when noise is present, but is relatively insensitive to increases
in the noise amplitude or noise frequency. Compared to the PW case,
the Lagrangian path of the SW case displays more statistical scatter.
That is to say, in the PW case it is found, on average, the mean orbit
displacement tends to be closely related to the beginning and average
ending particle position, over a specified time span. In contrast, the
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maximum displacement for the SW case does not usually agree with
the average ending particle position.

APPENDIX A. NUMERICAL APPROXIMATION OF THE WAVE
CHANNEL

Solutions to (5) and (6) may be approximated by using finite-difference
techniques. The spatial domain of the periodized wave channel had di-
mensions 0 < x < 3\, where X is the wavelength of the external forcing,
and 0 < z < z,. In the horizontal direction, we use an equally spaced
grid with coordinates given by x; = jAz, where Az is fixed; the grid
levels in the z direction were distributed according to

(7) 2 = (k/K)P,

where p is a real value between 1 and 2, K is the total number of grid
levelsin z, and 0 < k£ < K. The triplet (j, k; p) uniquely determines any
position in the channel. The discrete domain is denoted by Q = (z;, 2).
The finite-difference approximation of the equations of fluid motion
on {2 was accomplished by splitting the hyperbolic and parabolic parts
in a standard way (see Hirsch [29]). The hyperbolic part was advanced
in time explicitly by using a low-order upwinding scheme. The para-
bolic part marched forward in time by using a Crank-Nicholson scheme.
First and second derivatives with respect to z were approximated as

& ~ (A + V)ZJZ AZ,‘ VZZ'

where Afz - f('aZH—l) - f('azi)a sz - f(: zi) — f('azifl), and

’f 2 (Afi Vf,->

922~ (A+V)z \Az  Vaz

respectively, for some dynamic quantity f.

The accuracy was evaluated by comparing the computed solution
with an exact solution. The test problem was Stokes’s second prob-
lem, which describes the boundary layer flow over a horizontally os-
cillating plate [22, p. 93]. The external forcing was set to the hori-
zontal velocity at the edge of the layer u(z, 1,t) = cos(wt). The ex-
act solution of Stokes’s second problem, for z, sufficiently large, is
u(z,t) = exp(—s(1 — 2)) cos|wt — s(1 — 2)], where s = /2/w. In the
test results to be presented, the forcing frequency was set to w = 27
and the wavenumber to 67, which produces a wavelength A = 1/3.
The equations were integrated for five periods, at which time the ana-
lytic and computed results were compared. Quadratic convergence was
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FIGURE 11. The computed horizontal velocity u at a
fixed location z;, as a function of depth, for different
values of K; at some location z, after five periods of
oscillation: (a) uniform mesh, with p = 1; (b) nonuni-
form mesh, with p = 1.75. Notation: crosses, K = 20;
squares, K = 40; dots, K = 80.

achieved when the grid was uniform in z. For nonuniform grids, the
convergence was superlinear.

Figure 11 shows cross sections of the computed horizontal velocity
as a function of z at a fixed location x;. The units of the z axis in the
figure are given in terms of boundary layer thicknesses 0. The external
velocity was a progressive wave of dimensionless amplitude 0.006. Fig-
ure 11a shows the velocity, as approximated by using a uniform grid
(p = 1 following (7). The K = 20 case is depicted by crosses, the
K = 40 case by squares, and the K = 80 case by dots in the figure. All
cases were computed with M = 90 and At = 27/800. The graph shows
the computed solutions converging in accordance with our expectations
of what a typical layer profile should look like. Figure 11b shows the
computed velocity profiles at the same position in z; and same time
as in Figure la, but these solutions were computed on a variable mesh
(again following (7)) with p = 1.75. It is clear from these figures that
the nonuniform mesh adequately captures the solution, using fewer
discretization points than would otherwise be required with a uniform
grid. Furthermore, Az = \/66, and the time step was set to 7/400,
where 7 is the period of the forcing.

For the flows investigated in this study the mean shear stress is
proportional to the mean Eulerian velocity. Unlike the mean Eulerian
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FIGURE 12. Wall shear stress: (a) Navier-Stokes, (b) Prandtl.

velocity, however, the mean shear stress depends only on the channel
length and time. Hence, it is a quantity that lends itself to answer the
following question: Do the results obtained by using a Prandtl model
differ qualitatively (and in an appreciable way, quantitatively) from
those obtained by using the Navier-Stokes equations? We benchmarked
the mean shear stress computed by using a spectral element Navier-
Stokes (NS) solver due to Fischer (see [30] for details). The solver uses
periodic boundary conditions at the far and near ends of the channel
and no-slip conditions at the bottom of the channel. The forcing

u = U,y cos(kx — wt) cosh(ky)/sinh(kh)
= Uysin(kz — wt) sinh(ky)/ sinh(kh)

generates a bulk pressure field that drives the flow. The initial condi-
tion is also derived from the above forcing. In the comparisons, aspect
ratios reached in the Prandtl code were not accessible in the NS code.
Instead of parameters used in the experiments reported in this study,
the comparison of the time-averaged wall shear stress was made by
using h = 0.01 m depth, w = 27, and U,, = 0.2hw m/s. The compar-
ison is made at ¢ = 8 s. The NS solver was run by using eight cells
in the z direction and eighteen in the z direction, and the elements
used polynomials of order 8. Under progressive wave forcing, the as-
ymptotic wall shear stress ((0u/0z)|,—0) reported by the NS solver is
approximately 10.7 s~!, whereas the shear is 3.41 s~! for the Prandtl
model code. Given that there is no exact description of how thick the
boundary layer should be, for the numerical computation of solutions
in the Prandtl model, the quantitative comparison indicates adequate
agreement. Qualitative agreement can be inferred from Figure 12.
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APPENDIX B. TESTING THE RUNNING-AVERAGE ALGORITHM

Running averages were used extensively as a diagnostic tool in this
study. In particular, running averages were used to calculate the mean
Eulerian velocity. The running averages were tested as follows. A sinu-
soidal progressive wave cos(kx — wt) replaced the velocity field within
the Prandtl code. All other aspects of the code remained the same,
including the running average routine itself. The running average out-
put of the code was then examined at times commensurate with the
period, over many tens of thousands of time steps. At these times, the
outcome for the running average of this sinusoidal signal was machine
zero throughout the channel length, as expected.

APPENDIX C. THE ADVECTION SCHEME

In addition to characterizing the flow under different forcing and
noise conditions, we were also interested in assessing how the flow itself
affects the distribution of passive tracers present in the boundary layer.
To do this, we used a tracer tracking algorithm. The algorithm yields
the eventual distribution of a collection of ideal tracers that are initially
placed uniformly along the length of the channel and then subjected
to advection by the transport velocity.

Specifically, the computed Eulerian velocity u(z, 2;,t,),n = 0,1, ...,
and t, = nAt, was used to compute Ur(z, z,1,), a first-order splined
semidiscrete interpolation of the advection velocity. This advection ve-
locity was assumed fixed for a time interval TAt, where T > 1. N, par-
ticles were distributed uniformly along the channel, at locations X (#),
where £ = 1,2,..., N, at some height z;, at the initial time ¢,. We
then allowed the particles to advect according the the local velocity Ur.
Hence, particles moved to a new position X (¢,+TAt) = TAtU(X,, , t,)
in time T'At. The new advection velocity was then calculated and the
procedure repeated to find the new position of the particles.

Since the magnitude of the velocities was small, freezing both the
particle velocity and position for 7" steps yielded a saving in compu-
tational expense. The value of 7" in the experiments reported here
was 5. This value increases the dissipation inherent in the advection
algorithm. Hence, particle orbits, even for a perfectly linear acoustic
field, would exhibit drift and thus not close on themselves. Drift, in
turn, leads to overestimates in the particle transport. Hence, parti-
cle advection experiments must be short in duration and particle flux
comparisons made in relative, rather than absolute, terms.
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